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Abstract—The field nearby a thin iris discontinuity can be
found in an exact manner by solving the wave equation in an
appropriate coordinate system. To this end, it is necessary to
select a coordinate system that fits the iris boundary. As an
example, capacitive and inductive irises in rectangularwaveguides
have been solved by considering the Helmholtz equation in the
elliptic-cylinder coordinate system. The presence of the wave-
guide environment is then enforced either by using the aperture
field solution in a variational expression of the equivalent shunt
susceptance or by taking images.

The advantage of the new solution is that a single term solution,
apart from being very accurate and numerically efficient, also
contains the correct frequency dependence; thus providing results
over the entire band. Moreover, wide-band equivalent circuits
with frequency independent elements of the Foster’s canonical
form descend directly from the field analysis.

I. INTRODUCTION

EQUIVALENT circuits of irises’ discontinuities have re-
ceived considerable attention in the past in view of their

usefulness for the design of several waveguide components
such as filters, multiplexers, etc. In order to characterize
waveguide discontinuities it is advantageous to use variational
formulae [1], which provide the sought susceptance in terms
of the field on the transverse section containing the iris
discontinuity. A better field representation leads to a more
efficient evaluation of the susceptance. The crucial point is
therefore the choice of the unknown tangential electric field
on the aperture, or conversely, of the unknown current on
the metallization. Consider for instance, a capacitive window
in a rectangular waveguide and its solution in terms of the
tangential electric field on the aperture (Fig. 1). Typically, the
unknown field is expanded into a set of functions belonging
to one of the following classes:

1) functions satisfying the wave equation, but not having
the correct behavior at the edges, such as ;

2) functions having the correct behavior at the edges, but
not satisfying the wave equation, such as Chebyshev
polynomials weighted by an appropriate singular func-
tion [2];
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Fig. 1. Capacitive septum in rectangular waveguide.

3) very simple functions having neither the correct behavior
at the edges nor satisfying the wave equation, such as,
pulses, triangular functions, etc.

Although good results can be obtained from all three choices,
there are drawbacks. In particular, the first choice requires a
large number of expanding functions involving consequently
large matrices. Those dimensions are considerably reduced
with the second choice, but large apertures still require em-
ploying a few functions and the error increases with fre-
quency. The third choice is appreciated for its flexibility,
but it also requires still more expanding functions than the
former choices. The first and the third sets, moreover, do not
produce an accurate description of the field near the edges.
Furthermore, since the functions belonging to the above sets do
not depend on frequency, that dependence enters the expanding
coefficients, which, consequently, have to be calculated at each
spot frequency.

A conceptually different approach is proposed in this paper.
Instead of expanding the field in terms of one of the above
sets, we look for a solution of the wave equation nearby the
discontinuity. Such a solution has tolocally satisfy all the
boundary and edge conditions and can be obtained analytically
by first neglecting the presence of the waveguide walls. In
fact in that case, it is possible to find a coordinate system
which fits the boundary conditions of our discontinuity. Such
a coordinate system can be found in several cases; for example,
those shown in Fig. 2, thus enabling an elegant and effective
solution of the iris in an infinite ground plane. As an example,
when considering a thin capacitive iris in a rectangular wave-
guide, we note that the field in the proximity of the iris must
satisfy the same boundary conditions as the one present in a
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Fig. 2. Some irises which can be analyzed by the proposed method.

slotted metallic plane. The latter structure, however, allows an
analytical solution of the Helmholtz equation in the elliptic-
cylinder coordinate system. The presence of the waveguide
walls is then enforced by employing the above field solution in
the appropriate variational formula for the sought susceptance.

The advantages of the proposed approach are that the
one term solution not only satisfies the edge conditions, but
also has the correct frequency dependence, thus making it
particularly easy to extract single and multimode frequency-
independent equivalent circuits.

II. A PPLICATION OF THEMETHOD TO A CAPACITIVE WINDOW

In the capacitive case of Fig. 1, we have a three-components
field, namely , , ; the variational formula for the iris
susceptance in this case is given by

(1)

with

In order to solve this problem we consider an appropriate
elliptical coordinate system, centered on the slot, as shown
in Fig. 3:

(2)

(3)

The above coordinate system is related to that inside the
guide as , , and .

It is convenient to derive the unknown electric field from the
potential which, with reference to Fig. 3,
yields the to electric field in the slot as

(4)

Fig. 3. Elliptical coordinates.

The wave equation for the potential becomes the
Mathieu equation:

(5)

with

(6)

under boundary conditions, corresponding to even excitation:

on the iris aperture (7)

on the iris metallization.

(8)

In a neighborhood of the aperture, the solutions of (5) with
boundary conditions (7) and (8) are of the type:

(9)

are called periodic Mathieu functions of the first
kind, whereas are combinations of Mathieu func-
tions of the second kind [3] and [4]. Their expressions are,
respectively,

(10)

where and the coefficients can be found in [5]

(11)

with

The functions just introduced exactly satisfy the wave equation
and boundary conditions near the window forming a set of slot
eigenmodes, whereas the influence of the waveguide side walls



ROZZI et al.: IRIS PROBLEMS IN WAVEGUIDE 255

still has to be accounted for. This is done by using the above
functions as trial fields in the variational expression of the
equivalent shunt susceptanceof the capacitive window.

Therefore, when considering just the first slot eigenmode,
we obtain

(12)

where is the field amplitude. It is worth noting that (12),
while yielding the correct singularity of the field at the edges
of the type , is also a solution of the wave equation.

By noting that [5, p. 402]

(13)

the final expression of the susceptance is obtained:

(14)

Expression (14) can be computed very quickly, since the inner
series takes just two to three terms to converge. It is also
noted that just one Mathieu function is sufficient for obtaining
accurate results even for quite large apertures. In this case,
however, it is convenient to deal with currents on the iris,
still obtained from the solution of the Helmholtz equation in
elliptic-cylinder coordinates. For asymmetrical irises the first
series in (14) is modified retaining even terms and using two
Mathieu functions at most. Multiple slots can be dealt with in
an analogous manner

III. T HE INDUCTIVE WINDOW

The geometry of the inductive window and its coordinate
system are shown in Fig. 4. For polarization the iris
can be seen as a slot on a ground plane excited in the

-polarization (Fig. 3). The appropriate elliptical coordi-
nate system centered on the slot is also shown in Fig. 3:

(15)

(16)

The wave equation for the potential is the
same as (5) under boundary conditions corresponding to even
excitation

on the iris aperture (17)

on the iris metallization. (18)

In the neighborhood of the aperture the solutions of (5) with
boundary conditions as in (17)–(18) are of the type

(19)

Fig. 4. Inductive window in rectangular waveguide.

where

(20)

with

The functions just introduced exactly satisfy the boundary
conditions near the window, forming the set of the slot
eigenmodes, whereas the influence of the side walls has still
to be accounted for. This is done by using the above functions
as trial fields in the variational expression of the equivalent
shunt susceptance B of the inductive window, this is,

(21)

where is the modal admittance, the th modal
distribution, the trial field. In particular, using just one
function, the first odd TM slot eigenmode, we obtain

(22)

where is the field amplitude, , and the coefficients
can be found in [5]. Observing that [5, p. 402]

(23)

where .
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Fig. 5. Foster’s equivalent circuit of a realizable reactance.

The final expression of the susceptance becomes

(24)

As for the capacitive case, the above expression is computed
very quickly since the inner series takes just two to three
terms to converge. Therefore, the numerical effort of the above
choice is comparable with that required by using just one basic
function which satisfies the edge conditions, (i.e., belonging to
the second group mentioned in Section I). Moreover, as will
be shown in the next section, just one Mathieu function is
sufficient for obtaining accurate results even for quite large
apertures, noticeably extending the flexibility of the solution.

IV. FREQUENCY EXTRACTION

It is well known that a lossless reciprocal two-port admits
the equivalent circuit representation shown in Fig. 5, also
known as Foster’s form. The correspondent reactance holds:

(25)

where

(26)

For a thin inductive window, we also set . The
expression of the equivalent inductance is, therefore, obtained

(27)

Starting now from the analytical expression (24), it is imme-
diate to recover the expression of the equivalent inductance
associated to the reactance (26):

(28)

where, we have made explicit the form of the normalized
modal susceptance . The quasi-
static contribution is then obtained by setting :

(29)

Since the poles of the equivalent inductance (29) coincide
with the zeros of the denominator of expression (25), they
can be obtained in a straightforward manner and with great
accuracy by solving the equation:

(30)

Finally the residues are extracted by comparing (25) and
(30), thus obtaining

(31)

A further simplification is achieved by truncating the fre-
quency dependence in such a way as to consider the terms
up to . Under this approximation we obtain

(32)

(33)

Therefore, it is immediate to recover

(34)

(35)

The resulting equivalent circuit is finally shown in Fig. 6.
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Fig. 6. Final equivalent circuit of the inductive window.

Fig. 7. E-window comparison between the susceptances deriving from one
Mathieu function and those calculated with three Chebyshev polynomials.
The curves are indistinguishable.

Fig. 8. E-window comparison between the error using just one Mathieu
function and the error calculated with one Chebyshev polynomial.

Fig. 9. H-window comparison between the reactances deriving from one
Mathieu function with those calculated with three Chebyshev polynomials.
The curves are indistinguishable.

V. RESULTS

The accuracy of the present approach, using just a single slot
eigenmode, was checked by comparing our results with those
obtained employing a set of Chebyshev polynomials weighted
by the correct edge condition [2]. Under excitation,
for the latter to achieve adequate accuracy it is necessary to
consider three basis functions, resulting in a Green’s matrix
of dimensions 3 3. The computation time for that solution is
about four times greater than that required by the proposed
one. For instance, the computation of the susceptance for
the inductive case employing three Chebyshev polynomials
computed at 40 frequency spots takes 47 s to run on a
DIGITAL 3000/300X versus 11 s required by the present
solution. The latter is drastically reduced when the derivation
of the equivalent circuit is performed. In that case less than 1
s is required to analyze the window at 100 frequency spots. It
is also noted that the process of equivalent circuit extraction
is greatly simplified with respect to [6].

A. Capacitive Window

Fig. 7 shows a comparison between the susceptances ob-
tained when using three Chebyshev polynomials and just one
Mathieu function, considering three different windows, and up
to 50% of the waveguide height versus frequency. The results
are indistinguishable.

Results deteriorate somewhat for wider aperture. In that
case it is convenient to reformulate the problem in terms
of currents on the flanges, employing of course, the same
expanding functions. In order to appreciate the accuracy of
the approximation with respect to frequency, Fig. 8 compares
the errors involved when considering the first Mathieu function
and the first Chebyshev polynomial for a 60% height window.
It is apparent that for the former the error is considerably
smaller and decreasing with frequency, as the field is better
confined to the slot.



258 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 2, FEBRUARY 1997

Fig. 10. H-window comparison between the error using just one Mathieu
function and the error calculated with one Chebyshev polynomial. The curves
are indistinguishable.

Fig. 11. Comparison between the reactances deriving from the equivalent
circuit (continuous line) and the reactances calculated with three Chebyshev
polynomials (dashed line).

B. Inductive Window

Fig. 9 shows a comparison between the reactances obtained
by considering three different windows of aperture up to 66%
of the waveguide width versus frequency. In this case too,
for still wider windows it is more expedient to reformulate
the problem in terms of currents on the flanges. In order
to appreciate the accuracy of the approximation with respect
to frequency, Fig. 10 compares the errors involved when
considering the first Mathieu function and the first Chebyshev
polynomial for a 70% wide window. It is apparent that for
the former the error is considerably smaller and quite constant
over the whole band, whilst for the latter the error increases
with frequency.

Finally, Fig. 11 shows a comparison between true reactance
values and those obtained from the equivalent circuit of Fig. 6.

VI. CONCLUSION

We introduce the use of appropriate combinations of the
Mathieu functions as a new expanding set for the electric field
across a thin iris or for the current on a thin septum. This
set, satisfying edge conditions as well as the wave equation,
provides the most effective trial field so far in the variational
solution of this class of problems.
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