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Analytical Solution and Frequency Extraction of Iris
Problems in Waveguide by Separation of Variables
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Abstract—The field nearby a thin iris discontinuity can be
found in an exact manner by solving the wave equation in an
appropriate coordinate system. To this end, it is necessary to na
select a coordinate system that fits the iris boundary. As an
example, capacitive and inductive irises in rectangularwaveguides
have been solved by considering the Helmholtz equation in the
elliptic-cylinder coordinate system. The presence of the wave-
guide environment is then enforced either by using the aperture
field solution in a variational expression of the equivalent shunt
susceptance or by taking images.

The advantage of the new solution is that a single term solution,
apart from being very accurate and numerically efficient, also
contains the correct frequency dependence; thus providing results
over the entire band. Moreover, wide-band equivalent circuits )/
with frequency independent elements of the Foster's canonical 4
form descend directly from the field analysis.

¥

Fig. 1. Capacitive septum in rectangular waveguide.
I. INTRODUCTION

QUIVALENT circuits of irises’ discontinuities have re- 3) very simple functions having neither the correct behavior

ceived considerable attention in the past in view of their  at the edges nor satisfying the wave equation, such as,
usefulness for the design of several waveguide components pulses, triangular functions, etc.
such as filters, multiplexers, etc. In order to characteriz@though good results can be obtained from all three choices,
waveguide discontinuities it is advantageous to use variatiofgére are drawbacks. In particular, the first choice requires a
formulae [1], which provide the sought susceptance in termgge number of expanding functions involving consequently
of the field on the transverse section containing the irigrge matrices. Those dimensions are considerably reduced
discontinuity. A better field representation leads to a MOgith the second choice, but |arge apertures still require em-
efficient evaluation of the susceptance. The crucial point figoying a few functions and the error increases with fre-
therefore the choice of the unknown tangential electric fieiency. The third choice is appreciated for its flexibility,
on the aperture, or conversely, of the unknown current @it it also requires still more expanding functions than the
the metallization. Consider for instance, a capacitive windoggrmer choices. The first and the third sets, moreover, do not
in a rectangular waveguide and its solution in terms of th®oduce an accurate description of the field near the edges.
tangential electric field on the aperture (Fig. 1). Typically, theyrthermore, since the functions belonging to the above sets do
unknown field is expanded into a set of functions belongingot depend on frequency, that dependence enters the expanding

to one of the following classes: coefficients, which, consequently, have to be calculated at each
1) functions satisfying the wave equation, but not havingpot frequency.
the correct behavior at the edges, sucb@$2nm /w)z; A conceptually different approach is proposed in this paper.

2) functions having the correct behavior at the edges, bustead of expanding the field in terms of one of the above
not satisfying the wave equation, such as Chebyshsets, we look for a solution of the wave equation nearby the
polynomials weighted by an appropriate singular fundiscontinuity. Such a solution has tocally satisfy all the
tion T}, (2x/w)(1 — (2z/w)?)~1/2 [2]; boundary and edge conditions and can be obtained analytically

i ) ) ) bk/ first neglecting the presence of the waveguide walls. In
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Fig. 2. Some irises which can be analyzed by the proposed method.

slotted metallic plane. The latter structure, however, allows gn
analytical solution of the Helmholtz equation in the elliptic-
cylinder coordinate system. The presence of the waveguidle
walls is then enforced by employing the above field solution i;l:
the appropriate variational formula for the sought susceptance.

The advantages of the proposed approach are that fife3- Elliptical coordinates.
one term solution not only satisfies the edge conditions, but
also has the correct frequency dependence, thus makingile wave equation for the potential(x,y) becomes the
particularly easy to extract single and multimode frequencyathieu equation:
independent equivalent circuits.

[82 + 835 + h%(cosh? p — cos? )| = 0 (5)
Il. APPLICATION OF THEMETHOD TO A CAPACITIVE WINDOW with
In the capacitive case of Fig. 1, we have a three-components kow
field, namelyE,,, E;, He; the variational formula for the iris h=—- (6)

susceptance in this case is given by » ) o
under boundary conditions, corresponding to even excitation:

0 w/2 2
Z 1 l/ cos (nibn)En(n,w) dn] 1(¢,0) =0 on the iris aperture ;» = 0 (7)
B(w) = 4k, 2=2 % _w/Q/Q 5 (1) ptp(m, 1) = 0p1p(0, ) = 0 on the iris metallization.
w 8
[/ Eﬁ(nvw) dﬁ] ( )
/2 In a neighborhood of the aperture, the solutions of (5) with
with boundary conditions (7) and (8) are of the type:
2
kt = k‘g - (I) 1/)(1% d)) = en(h d)) en(h N) n= 072747 o (9)
a
nr Sen(h, ¢) are called periodic Mathieu functions of the first
Yn = (T) — k7. kind, whereasF,,,(h, 1) are combinations of Mathieu func-
tions of the second kind [3] and [4]. Their expressions are,
In order to solve this problem we consider an approprla}gspectlvely
elliptical coordinate system, centered on the slot, as showi '
n Fig. 3:
in Fig w Senlq, ¢) = ZA ) cos(2r¢) (10)
T=5 cosh j1 cos ¢ (2)
y = % sinh yosin é. 3) whereq = h?%/4 and the coefficientsts, can be found in [5]

The above coordinate system is related to that inside théen (s 1) = Jen (s 1)) New(h, 0) = Jen(h, 0)Nen (b, 1) (11)
guide ask, = E,, B, = E,, andH; = H.. with

It is convenient to derive the unknown electric field from the
potentialy(x,y) = H.(x,y) which, with reference to Fig. 3, Pen(h,0) =0 P[,(h,0) =

ields theTE to z electric field in the slot as . I . .
y i The functions just introduced exactly satisfy the wave equation

E,=E4(n=0)= M LH.. (4) and boundary conditions near the window forming a set of slot
w/2sin ¢ eigenmodes, whereas the influence of the waveguide side walls
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still has to be accounted for. This is done by using the above
functions as trial fields in the variational expression of the A
equivalent shunt susceptangeof the capacitive window.

Therefore, when considering just the first slot eigenmode,
we obtain

By(w) = 5 > Al (g)eos(zr)  (12)
r=0

Sl
where Ej is the field amplitude. It is worth noting that (12),
while yielding the correct singularity of the field at the edge

of the typer—1/2, is also a solution of the wave equation.
By noting that [5, p. 402]

/ : cos (H—T)En(n,w) dn
—w/2
Eown . nrTw
==y LA @D b)) @9 /(;

the final expression of the susceptance is obtained:

Fig. 4. Inductive window in rectangular waveguide.

- Z::Ag,,(q)(—l)”hr(n;—bw)] : where

(14) Pon(hypt) = Jon(hy W) N2 (R, 0) = T2 (hy 0) Ny (hy 1)
(20)

Expression (14) can be computed very quickly, since the inner

series takes just two to three terms to converge. It is alge,

noted that just one Mathieu function is sufficient for obtaining

accurate results even for quite large apertures. In this case, P,,(h,0) =1 P (h,0)=0.

however, it is convenient to deal with currents on the iris,

still obtained from the solution of the Helmholtz equation iThe functions just introduced exactly satisfy the boundary

elliptic-cylinder coordinates. For asymmetrical irises the firsionditions near the window, forming the set of the slot

series in (14) is modified retaining even terms and using tvgenmodes, whereas the influence of the side walls has still

Mathieu functions at most. Multiple slots can be dealt with itp be accounted for. This is done by using the above functions

an analogous manner as trial fields in the variational expression of the equivalent
shunt susceptance B of the inductive window, this is,

[ll. THE INDUCTIVE WINDOW o0 w/2 2
The geometry of the inductive window and its coordinate 2y bon[ Pn(§)Ey(&; w) dﬁ]
system are shown in Fig. 4. F&'E,,o polarization the iris Blw) = =32 —w/? (21)
can be seen as a slot on a ground plane excited in the w/2 2
TM?-polarization (Fig. 3). The appropriate elliptical coordi- / /2¢1(£)E,7(£,w) d§

nate system centered on the slot is also shown in Fig. 3:

where —jbg,, is the modal admittancep,, the nth modal

=Y cosh 15
@ =7 coshpcos (15) distribution, E,, the trial field. In particular, using just one

y =2 sinh ysin ¢. (16) function, the first odd TM slot eigenmode, we obtain
The wave equation for the potentialz,y) = E.(x,v) is the E)(§,w) = Eo Y By (@)sin[(2r+1)¢]  (22)
same as (5) under boundary conditions corresponding to even =0

excitation whereEj is the field amplitudeg = 2% /4, and the coefficients

8,1(¢,0) =0 on the iris aperture ;= 0 (17) Bj,.1 can be found in [5]. Observing that [5, p. 402]
¥(m, u) =(0, ) = 0 on the iris metallization. (18) w/2 B o nw
| @) d = 25 S B R ()
In the neighborhood of the aperture the solutions of (5) with”—w»/2 =0 @
boundary conditions as in (17)—(18) are of the type (23)

Z/}(/vbv ¢) = Son(h7 d))Pon(hv N)v n= 17 37 57 T (19) WhereBr(Q) = B%1‘+1(Q>(2T + 1)(_1)T'
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Starting now from the analytical expression (24), it is imme-
diate to recover the expression of the equivalent inductance
associated to the reactance (26):

2
s (50)]
(a9} 2
e

n=3,5
(28)

L(@) =

where, we have made explicit the form of the normalized
modal susceptanch, (@) = yn? — 1 —w?/w. The quasi-
Cy —— Ly static contribution is then obtained by settitag= 0:

2
ZB =0 (5

L3

Fig. 5. Foster’'s equivalent circuit of a realizable reactance. Lo = >
2\/712 nwwWw
ZB w=0) J21+1( )
The final expression of the susceptance becomes n=3,5 2
2 (29)
nmww
2 Z bon[ ZB J27+1( 2a )] Since the poles; of the equivalent inductance (29) coincide
B(w) = n=3,5 (24) with the zeros of the denominator of expression (25), they

2 can be obtained in a straightforward manner and with great
ZB J21+1( a) accuracy by solving the equation:

2
ZB J21+1(HWW)]

terms to converge. Therefore, the numerical effort of the above .
choice is comparable with that required by using just one basic = K(@* - w%)(WQ - wé) (@ - Th). (30)
function which satisfies the edge conditions, (i.e., belonging fnally the residued.; are extracted by comparing (25) and
the second group mentioned in Section I). Moreover, as W(ho) thus obtaining
be shown in the next section, just one Mathieu function is
sufficient for obtaining accurate results even for quite large
apertures, noticeably extending the flexibility of the solution.

L;=

As for the capacitive case, the above expression is computed i 2y/n? — 1 - w?
very quickly since the inner series takes just two to three

n=3,5

S|

R ] O e R 01
(31)

IV. FREQUENCY EXTRACTION

It is well known that a lossless reciprocal two-port admits S . _
the equivalent circuit representation shown in Fig. 5, aldd further simplification is achieved by truncating the fre-

known as Foster’s form. The correspondent reactance hold@uency dependence in such a way as to consider the terms
up to@?. Under this approximation we obtain

1 L
X(w) =wlo - 0o +wz [71_2 —L;| (29 Bl (w) ~1 (32)
7=l 1—{_&} Lo o L (TWN2
where Therefore, it is immediate to recover
w_/}_a W 3 /w2 W 2
L L {Jl(za)m(%) J3(%)}
LOILOO-FZLJ- (26) 0 i%/n?— J (nww)+£(ﬂ)2j (mrw) 2
=1 g2 "\2a /"32\24/ 2\ 2
For a thin inductive window, we also s&y/C, = 0. The 7 (34)

expression of the equivalent inductance is, therefore, obtained

W 3 srw\2 TW ,_ 2
[Jl(za) +53(5,) %(5, @ “ﬂ

L0+Z - L;. 7) L,=- S CAL AR
j=11 _ [_} 2KW} (@] - w3)(@f — i) - (@] — W}

Wi The resulting equivalent circuit is finally shown in Fig. 6.

(35)
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Fig. 6. Final equivalent circuit of the inductive window.
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Fig. 7. E-window comparison between the susceptances deriving from o%%
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Fig. 9. H-window comparison between the reactances deriving from one
Mathieu function with those calculated with three Chebyshev polynomials.
The curves are indistinguishable.

V. RESULTS

The accuracy of the present approach, using just a single slot
eigenmode, was checked by comparing our results with those
obtained employing a set of Chebyshev polynomials weighted
by the correct edge condition [2]. Und&fE,, excitation,
for the latter to achieve adequate accuracy it is necessary to
consider three basis functions, resulting in a Green’s matrix
of dimensions % 3. The computation time for that solution is
about four times greater than that required by the proposed
one. For instance, the computation of the susceptance for
the inductive case employing three Chebyshev polynomials
mputed at 40 frequency spots takes 47 s to run on a

Mathieu function and those calculated with three Chebyshev polynomialdlGITAL « 3000/300X versus 11 s required by the present

The curves are indistinguishable.
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solution. The latter is drastically reduced when the derivation
of the equivalent circuit is performed. In that case less than 1
s is required to analyze the window at 100 frequency spots. It
is also noted that the process of equivalent circuit extraction
is greatly simplified with respect to [6].

A. Capacitive Window

Fig. 7 shows a comparison between the susceptances ob-
tained when using three Chebyshev polynomials and just one
Mathieu function, considering three different windows, and up
to 50% of the waveguide height versus frequency. The results
are indistinguishable.

Results deteriorate somewhat for wider aperture. In that
case it is convenient to reformulate the problem in terms
of currents on the flanges, employing of course, the same
expanding functions. In order to appreciate the accuracy of
the approximation with respect to frequency, Fig. 8 compares
the errors involved when considering the first Mathieu function
and the first Chebyshev polynomial for a 60% height window.
It is apparent that for the former the error is considerably

Fig. 8. E-window comparison between the error using just one Mathi(§ma”er and decreasmg with frequency= as the field is better

function and the error calculated with one Chebyshev polynomial.

confined to the slot.
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Finally, Fig. 11 shows a comparison between true reactance
values and those obtained from the equivalent circuit of Fig. 6.

VI.

We introduce the use of appropriate combinations of the
Mathieu functions as a new expanding set for the electric field
across a thin iris or for the current on a thin septum. This
set, satisfying edge conditions as well as the wave equation,
provides the most effective trial field so far in the variational
solution of this class of problems.

CONCLUSION
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